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Abstract

The paper proposes an adaptive Lyapunov-based nonlinear model predictive control to cope with
the problems in nonlinear systems subjecting to system constraints and unknown disturbances of
the parallel car driving simulator. Commonly, standard nonlinear controllers could guarantee the
overall system stability for the parallel structure. However, the constraints tend to impact the control
performance and stability adversely. Therefore, model predictive control (MPC) plays a vital role in
the proposed technique to explicitly consider all the practical constraints and simultaneously enhance
the system’s robustness. Nevertheless, the accuracy of the modeling process has a significant effect
on the MPC performance, and thus, the convergence cannot be guaranteed in the presence of the
model uncertainties. To overcome this problem, by the merit of the fuzzy adaptive law, the control
system takes the disturbances and unmodelled parameters into account. Moreover, the feasibility
and stability of the approach, which is the fundamental problem of MPC, are ensured according
to the Lyapunov-based nonlinear controller, Backstepping aggregated with Sliding Mode Control
(SMC), and hence inherit advantages of these controls. Simulation results show the efficiency and
superior constituted controllers of the proposed method.

Keywords
Nonlinear Model Predictive Control (NMPC), Fuzzy logic, Adaptive control, Car Driving Simulator
(CDS)

"Hanoi University of Science and Technology, Hanoi, Vietham
2VNU University of Engineering and Technology, Hanoi, Vietnam

Corresponding author:
Tung Nguyen Lam, Hanoi University of Science and Technology, Hanoi, Vietnam
Email: lam.nguyentung@hust.edu.vn

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Transactions of the Institute of Measurement and Control XX(X)

Introduction

Parallel robots have been increasingly prevalent in many fields, including industry, military, and medical
applications. There are many types of parallel structures have been proposed such as three degree of
freedom (3 DOF) Quan et al. (2020), Khalifa et al. (2018), Dindorf and Wos (2019), or six degree of
freedom (6 DOF) Campa et al. (2016), Rastegarpanah et al. (2016) which are widely applied especially
in rehabilitation. Besides, several potential applications of parallel robots are taken into account, for
instance, high-speed manipulation, material handling, planetary explorers, and pointing devices in
terrestrial and space environments. Moreover, for the motion simulation scope, parallel robots can
accurately simulate the actual motions of flight, car driving simulation, and marine motion in particular
scenarios. In addition, the driving simulation model effectively reduces risks induced by methods based
on actual vehicles and minimizes the driver’s unexpected effects at the first period of training progress.
Compared with serial robots, which are compromised between precision, complexity, mass, and cost,
the parallel robot provides higher accuracy and dynamic performance. In detail, they can achieve high
rigidity with a smaller mass of manipulators, that provide better accuracy and necessary speed in motion
and promote the application of parallel driving simulation platforms. Commonly, most of these models
require highly certain stiffness because the external load is shared by multiple legs, as well as high
acceleration and speed due to the low inertia of the moving structure Jin et al. (2015).

Comprehensive research on the kinematic and dynamic model of the system is of paramount
importance to designing an effective controller. For the parallel robot 6 DOF, its forward and reverse
kinematics models are studied explicitly in Thomas et al. (2022) and Campa et al. (2016). The noticeable
advantage of the 6 DOF parallel robot is the ability to maneuver flexibly with high precision. However,
the motion complexity due to the combination of the six actuators causes many challenges for control
designs, especially in disturbances and time delay. Therefore, in order to attenuate the model complexity
as well as computational time, the configurations with fewer joints and DOF Gouttefarde et al. (2015),
and Quan et al. (2020) are considered as the more appropriate measures for practical applications. In
addition, the impact of delay transmission and redundancy of actuators are also reduced in lower DOF
cases. Thus, based on related research works and the application of our parallel robot in the car driving
problem, a four-DOF platform (4 DOFP) is constructed, which includes four motions: rotational motions
around OX, OY, and OZ axes, and translation motion along the OZ axis.

In general, the control design for the trajectory tracking problem of the parallel robot system is an
attractive field with many challenging issues due to its diversity of system configuration and highly
nonlinear characteristics. Linear control methods such as proportional-integral-derivative (PID) and
linear-quadratic-regulator (LQR) are widely used because of their ease of implementation in practice.
However, the cancellation of some useful nonlinear information of the system could reduce the accuracy
and lead to divergence in some cases. Combining linear controllers with an adaptive scheme is one of
the effective approaches to improve the tracking performance Salas et al. (2019) and Jamshidifar et al.
(2015). In Tian (2021), a time-delay compensation method based on PI-based dynamic matrix control
for the networked control system is proposed. The novel objective function of dynamic matrix control
is integrated with the PI feedback structure to obtain the optimal control increment value, leading to the
noticeable reduction of the impact of mismatch and interference on the system. In Choubey and Ohri
(2022), the linear quadratic regulator and proportional integral derivative controller are proposed for
trajectory tracking problem of 3-DOF Maryland manipulator, in which the control parameters are tuned
by gray wolf optimizer (GWO) algorithm. On the other hand, nonlinear control techniques are typically
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employed for nonlinear systems such as parallel robots to design trajectory tracking controllers. One of
the most prevalent nonlinear control methods is the Backstepping technique and its variations Thi et al.
(2019), Truong et al. (2021), and Yu et al. (2018), which is based on the recursive design procedure
where the derivation of the Lyapunov function is linked with the design of feedback control signals.
However, the control quality is degraded if the system’s parametric uncertainties and noise components
exist, leading to the explosion of terms’ phenomena. Another commonplace nonlinear feedback control
method is sliding mode control (SMC) Oumer and Hunde (2015), Hoang and Vuong (2018), and Lv et al.
(2017) because of its advantageous features, including fast dynamic response and robustness to external
disturbances and uncertain parameters. Nevertheless, the chattering phenomenon generated by the SMC
controller is always a concerning problem that potentially damages the control performance, especially
in the hardware system. Hence, higher-order SMC Oumer and Hunde (2015) is an upgraded approach
that can attenuate chattering problems and guarantee finite-time convergence. Besides, the combination
of Backstepping and SMC is another strategy to enhance the performance by taking advantage of both
controllers Thi et al. (2019) and Wang et al. (2020a). In order to solve the phenomenon of “explosion of
terms”, the Dynamic surface control (DSC) technique has been proposed Tien et al. (2019) and Qinyang
et al. (2017), in which multiple sliding surfaces combined with the Backstepping technique and a low-
pass filter for each computation step are leveraged. In addition, there are some other effective methods,
such as fuzzy techniques, which are capable of estimating virtual signals and minimizing chattering
Zhang et al. (2020a).

Model predictive control (MPC) is an advanced control method based on time-domain optimization
techniques in presence of constraints Li et al. (2021), Han et al. (2018), Inel et al. (2021), Tian and Wang
(2022). Recently, along with the development of computer technology and the availability of models
of many engineering subjects, the construction and implementation of MPC controllers in hardware
systems is not a challenging problem anymore. Moreover, owing to the capability of explicitly handling
hard constraints existing in the system, which are normally neglected in the traditional control methods
mentioned above, the MPC method is considered as a potent tool to solve control engineering problems
Wen et al. (2018), Song and Huh (2021), and Santos et al. (2019). In Tian and Wang (2022), a novel
predictive control compensation method is introduced to effectively handle the random time-delay in a
networked control system by using different compensation strategies for input time-delay and output
time-delay. The fast implicit generalized predictive control algorithm is employed, which combines
the historical output and control variable value to compensate for the time-delay in the input channel.
Meanwhile, the feedback loop is added to the control compensator, and the error between the actual
control signal and the controller output is predicted to compensate for the time-delay in the output
channel, leading to a significant improvement in the system’s performance. A novel nonlinear algorithm
is developed in Inel et al. (2021) for the trajectory tracking of a planar cable-driven parallel robot based
on the finite horizon continuous-time minimization of a quadratic predicted cost function. The main idea
of MPC is that, at each sampling instant, it takes the current output measurements, inputs, dynamic states,
and mathematical model of the plant to predict the future system states and calculate a consequence of the
control signal over a finite horizon by optimizing an objective function subject to some constraints, and
then apply only the first element in the sequence to control the system. Nevertheless, as a consequence, the
direct relationship between the control signals and input variables is not expressed, making it challenging
to analyze the system’s stability, especially in nonlinear systems like the parallel robot. Since stability is
the most critical characteristic of any closed-loop system, any controller must guarantee this requirement
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in the design process. Therefore, a set of stability constraints are normally added to the MPC problem
to ensure the stability standard of the closed-loop system. Among many schemes in the literature, the
Lyapunov-based model predictive control (LMPC) approach is usually employed because it can explicitly
characterize the stability region, and the stability conditions are straightforward to be constructed as
well as implemented, which diminishes the complexity of the optimization problem Liu et al. (2017a),
Kiani and Mashhadi (2017). The LMPC approach adds some appropriate constraints to the optimization
problem based on an auxiliary Lyapunov-based controller and its corresponding Lyapunov function; thus,
the robustness and stability of the Lyapunov-based controller can be inherited. In Liu et al. (2017a), a
LMPC controller is proposed for non-holonomic mobile robots under input constraints. The auxiliary
controller is derived from a global bounded state feedback controller, which satisfies the control input
constraints; hence, the contraction condition based on its corresponding Lyapunov function guarantees
the recursive feasibility and closed-loop stability of the LMPC problem. Kim et al. (2019) proposed a
backstepping controller combined with LMPC, in which the virtual control signal of the first step in the
backstepping design procedure is replaced by an optimized solution of LMPC under the input constraints.
Therefore, the controller can take advantage of both the backstepping controller in terms of simple and
fast calculation and the MPC controller regarding the ability to handle the system constraints.

In the control field, the disturbance is considered an inevitable elementary existing in any engineering
system. Hence, it is pivotal to analyze and design a noise compensator to make the controller more stable
and robust. Regarding CDS, the noise components frequently occur in many ways Hao et al. (2016),
Ramirez-Neria et al. (2015), and Zhengsheng et al. (2021) such as unknown variable forces acting on its
actuator’s vertical system because of the sudden change of body weight, or the dry and viscous friction
force, or the parametric uncertainties of the mathematical model, etc. In Hao et al. (2016), a fast friction
approximator derived from the Lyapunov design process is proposed to estimate unknown frictions
of each electrical cylinder of a 6-DOF parallel manipulator. Ramirez-Neria et al. (2015) proposed a
Generalized Proportional Integral (GPI) observer to estimate the lumped disturbance inputs and the phase
variable of linear multivariable output feedback scheme, so the exact information of delta parallel robot
system is not necessary. On the other hand, in conventional nonlinear controllers such as Backstepping,
SMC, a fuzzy logic controller accompanied by an adaptive law is usually integrated, which utilizes the
mathematical characteristics and logic rules to effectively calculate the unknown components and track
their change Ji et al. (2020), Godbole et al. (2019). In fuzzy logic controller literature, adaptive law
is paramount in adjusting fuzzy parameters since the external disturbance and parameter perturbation
typically are unknown and very arbitrarily. In Zhang et al. (2020b), an adaptive fuzzy sliding mode
control for the 3-DOF parallel manipulator is proposed, in which the sliding mode controller with its
gains are adjusted by the fuzzy system is used to compensate for the parametric uncertainties of the
system, and the impact of external disturbances are diminished by adaptation law. Wu et al Wu et al.
(2016) presented an H-infinity based on variable structure adaptive fuzzy control for tower crane system
under the impacts of external disturbances, parametric uncertainties, and time delay. By combining the
adaptive fuzzy control with a variable structure scheme, the system parameters are not required to be
known in advance, while the H-infinity control technique rejects the fuzzy errors and disturbance. In
addition, in Baigzadehnoe et al. (2017), a fuzzy approximation system with an adaptation law is used to
estimate unknown nonlinearities of cooperative robot systems, combined with a backstepping controller
to guarantee the boundness of all close-loop signals and the tracking errors converging to desired values.
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Inspired by the methods mentioned above, in this paper, an adaptive fuzzy Lyapunov-based model
predictive controller is proposed for the CDS taking into consideration the system’s constraints and the
presence of external disturbances and model uncertainties to ensure the tracking performance of 4 DOF
car driving simulations. The paper contributions can be summarized as follows:

1. The proposed method is able to cope with the problem of controller design for the CDS considering
the input and system constraints which are typically neglected in many studies, especially
conventional nonlinear controllers Lu et al. (2018), Ji et al. (2020), and Tian (2021). Theoretically,
if these constraints are not adequately handled in the control formulation, the overall stability
cannot be guaranteed; moreover, the signal generated by the controller can exceed the system
actuator capacity if control parameters are not moderately determined. By employing the MPC
controller, all the constraints are explicitly expressed and solved in the optimizing process, leading
to improved performance and the robustness of the tracking problem for the CDS. Therefore, the
proposed controller is more efficient and effective in ensuring stability in the presence of practical
constraints.

2. The proposed controller also has an ability to deal with the stability problem of traditional
nonlinear MPC, leading to the system’s stability being explicitly analyzed, owning a stable
feedback controller and its corresponding Lyapunov function, and thus the sufficient conditions
to guarantee the recursive feasibility and closed-loop stability for MPC problems are explicitly
derived without local linearization step as in Christofides et al. (2011). Based on this pivotal
property, the guaranteed region of attraction is critically described. Moreover, the Lyapunov control
law used for the contraction condition of LMPC is designed based on an adaptive nonlinear
fuzzy controller. Hence, it takes advantage of the two controllers, including Backstepping and
Sliding Mode Control, in the system stability assurance. Furthermore, the adaptive rule with online
learning capacity significantly improves the quality of the Lyapunov control, especially in terms of
disturbances, and thus it enhances the performance of the generated signal from MPC.

3. The Fuzzy logic system is designed accompanied by an adaptive updated law for the Lyapunov-
based MPC controller, which can approximate the unknown external disturbances and uncertain
parameters to enhance predictive quality. Typically, the MPC performance significantly depends
on the accuracy of the predictive model obtained from the system’s mathematically modeling
process. Therefore, unmodelled elements remarkably take adverse impacts on the system behavior.
Hence, the controller can ensure the control quality even in the presence of unmodelled elements.
Compared to Zhang et al. (2020a), Xu et al. (2018), and Wang et al. (2020b), the fuzzy outputs are
illustrated to verify the accuracy of estimated values, as well as its efficiency when being integrated
with the LMPC controller.

The remainder of this paper is organized as follows: The kinematic and dynamic model of the car-
driving system under external disturbances are represented in Section 2. In Section 3, the Lyapunov-
based nonlinear model predictive control formulation is introduced. Next, Section 4 illustrates the fuzzy
approximation system to estimate the external disturbance, then constructs the contraction condition for
the LMPC problem via an adaptive fuzzy backstepping sliding mode control scheme. After that, the
system’s stability under the proposed controller is analyzed in detail in Section 5. Simulation results and
comparisons are highlighted in Section 6. Finally, the paper is wrapped up by some conclusive remarks
in Section 7.
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Figure 1. (a) Robot’s coordinates; (b) Vector diagram of CDS. Manh et al. (2021)

The driving simulator problem formulation

Kinematic modeling
]T as the system state vector where: p, is the vertical position and
]T

Define vector p = [ p. a B v

«, 3, v are rotation angular about OX, OY, OZ axes, respectively. Vector g = [ lhh Iy I3 ~
describes the piston’s length and O Z rotation angular where c is the distance between origin O and base
platform’s O 4, a, b are the radius of upper and base platforms, respectively.

The 4DOF Car driving simulator can be shown in Fig. 1. The vector equation of 4DOF Car driving
simulator where ¢ = 1, 2, 3 can be written as:

A,B,=OP+PB,— 044, — 00. (1

Denote A;,i = 1,2, 3 are the coordinates in the local coordinate O 4 XY Z associated with the base
panel’s center with:

Aibase = [ beos(6;) bsin(6;) 0 ]T 2)
and B;,¢ = 1,2, 3 are the coordinates in the local coordinate P.X;Y; Z; associated with the base panel’s
center with

Biupper = [ acos(0;) asin(6;) 0 ]T 3)

5
where 0; = I, 0y = 7 and 03 = 2T are the distributed angles of pistons on base platform.
Besides, in the global coordinate, the center points of the base and upper panel are Oy =
T T
[O 0 c] andpde:[O 0 pz}
Fixed coordinates of A; and B; are A; = T4 Ajpase + Oa and B; = T'p Bjypper + Dde, Which can be
obtained as follows:
cosy —siny 0
Ty= | siny cosy O
0 0 1
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cosy —siny 0 cos 0 sing 1 0 0
Tp=1| siny cosy O 0 1 0 0 cosa —sina
0 0 1 sing 0 cosf 0 sina cosa

Finally, the length of the robot’s legs is computed as
li = ||A:iBil, “

where A; B; = B; — A;. From (4), q can be computed from p.

System dynamics modeling

According to Tien et al. (2019), Manh et al. (2021), the dynamic model based on Euler-Lagrange form is
described as:
Mi+Cig+G+D=F &)

where M is the mass matrix, C' is the Coriolis and centrifugal matrix determined from the mass matrix,
D is the aggregation of generalized force and model uncertainties caused by the potential energy

and unknown system elements. The control signal vector is defined by F' = [ Iy F3 o7y ]T
Besides:
i my | Ipy mp mp i
— — — 0
mg + Mye + 9 + 102 9 9
mp mp Tpe mp
M = 9 M2 e 9T 19g2 9 . 6)
mp mp P
& it 4 c £ 0
9 9 mo + Mde + 9
L 0 0 0 I, |

with m; is the mass of the covering of piston, my is the mass of the pistons, m,. is the mass of the
motor on the cylinders and m,, is the mass of the mobile panels, I,,, I,,, and I, are the inertia of the
mobile panels along Oz, O,, and Oz, respectively. And:

[ 151,13
o 0 00
51,13
c=| 0 oo 0
0 0 0 0
0 0 0 0|
m T
G=(me+)g[1 1 1 0] ®)

with g = 9.8 m/s? is the gravitational acceleration. The disturbance is added to the dynamic system in
the following form:

D:[d1 dz d3 d4}T

®
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For the given system, nonlinear model-based controllers, including Backstepping and SMC, can
achieve the control target of reference tracking provided that accurate mathematical model is available.
A modern control method using radial basis function neural network with Lyapunov based adaptive law
as in Manh et al. (2021) not only copes with this kind of problem but eliminates the drawbacks of these
controllers. However, the constraints of system states, control inputs, and experimental parameters are
not considered, and thus the actuator constraint and even the stability cannot be satisfied.

In practice, the input constraints include the maximum and minimum forces of three pistons as well as
the limited rotation torque mobile panel. In addition, the system constraints are expressed in the stroke
length of three pistons and the rotation angle of the model panel. In our work, all these unavoidable
constraints are taken into consideration.

Lyapunov-based model predictive control

The system constraints are considered in the control signal computation by the optimization progress
of the MPC controller. The advantage of the LMPC method is that it can explicitly handle the input
and state constraints in the control design step and simultaneously can predict and evaluate the future
system states in the optimization step to induce satisfied control input for the current step accordingly.
In addition, based on the Lyapunov stability theory, the stability of the nonlinear system is guaranteed.
Hence, in this section, the nonlinear Lyapunov-based Model predictive control (LMPC) for the CDS
problem is presented in detail. The summary of CDS dynamic model:

F=M(q,d)i+C(q,d)g+G+D (10)
The equation (10) can be rewritten as:

G=M"(q.9)(F-C(g:9)i—G) =N (an
with N = M~1D. Letz = [ Z } , the dynamic model of CDS can be expressed in the following form:
[ q

Let £ = © — x4 be the state vector, u = F' — F}; be the control error. The nonlinear model predictive
controller for car driving simulator tracking problem can be formulated as follows

] = f(z) 12)

te+T
_ . _ . 2 - 2 2
F =arg min J = arg min ||a:(tk+T)||P+/tk 12 O + [lu ()3 dt (13)
subject to

@ (t) = f(x(t),F(t) Ve [tpty+T]; (14a)

2 (th) = 2oV t € [t b + TT; (14b)

|.7J (tﬂ = Tmazs (14¢)

|F' (V)] < Frnas (14d)
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In which, @, R, and P are positive weighting matrices. 7" is the prediction horizon, t;, is hte current
time instant. However, because of the finite prediction horizon, the complex offline design procedure is
usually carried out to ensure the stability of the closed-loop system when applying an optimal solution.
For nonlinear system, the standard MPC implicitly define the region of attraction (ROA) by local
linearization. In order to overcome this problem, the Lyapunov-based strategy is employed to formulate
the LMPC problem by introducing a contraction constraint to the original MPC problem.

%f(m (tr), F' () < %f(x (t) h(q(tr))), Vt€ [t;ts +T) (15)

where h (-) is the auxiliary Lyapunov-based controller corresponding to Lyapunov function V (-).
This contractive constraint guarantee that the LMPC inherits the stability and robustness properties of
Lyapunov-based controller h (-) irrespective of the length of the prediction horizon, and also explicitly
characterize the ROA where the stability is guaranteed.

The LMPC control algorithm for CDS trajectory problem is summarized in Algorithm 1|

Algorithm 1:
1. Input the objective function J
2. Measure the current state x ()
3. Solve the LMPC problem (13) with z (t) = z (t9) , resulting the sub-optimal solution F,;
4. Perform F,;, for only one sample period F' (t) = Fyyup fort € [tg, tgpt1]
5. Repeat from step 2 in the next sampling time

Remark 1. In Algorithm 1, the suboptimal solutions are acceptable for the nonlinear MPC algorithm.
The iterative methods can ensure that the solution to (13) is locally optimal. Moreover, the number of
iterations is restricted in real-time performance due to limited computational resources. However, as
can be seen in the later section, neither the recursive feasibility nor closed-loop stability of the LMPC
algorithm depends on the optimal global solution. Therefore, it is flexible to trade off the computational
time and algorithm accuracy without destabilizing the tracking control.

Closed loop Lyapunov-based controller design

This section presents the fuzzy approximation mechanism to estimate the external disturbance and
then illustrates the procedure to construct the auxiliary controller using the backstepping sliding mode
control technique with the estimated disturbance value and adaptation law. Subsequently, the detail of the
contraction condition for the MPC problem is derived.

External disturbance estimation
Assumption 0.1. The external disturbance D is bounded.

Due to the fact that the external disturbance D is undefined, as well as [V, it can be approximated by
q—4d

fuzzy logic system with the input vector & = [ i—d } = (1, %9, X3, T4, T5, Tg, T7, J}S)T. The output
—qd
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of fuzzy system using the strategy of singleton fuzzifier, product inference engine, and center-average
defuzzifier can be inferred as

M 8 ~
B dim1 Hj:l Hx: (T) yi

=WT¢(2) (16)
sz'vi1 ?:1 HXxi (@)

)

where juyi is the membership function of the i* fuzzy set for the 5" input z;, W =[y1,....,y M]T is the
J
8 -
Hj:l Hx: (Z5)
M 18 -
dim1 Hj:l Hxi (Z5)

function, M is the number of IF-THEN rules. Therefore, the approximation of [V can be expressed as

adjustable parameters vector, ¢ (z) = [(1, ..., CM]T with §; =

, being fuzzy basis

N =WT¢ (x) a7

Assuming that x and W are constrained in the compact set €2,, Qy respectively with Q, =
{zlc, <® <&} Qw = {W]s,, < W < Gy}, and there exists optimal parameters W* such that

W* =arg Hé[i/n{ sup |N () - WT¢, (a:)} (18)

TEQ,

Define the estimated parameter errors as W=W — W™, the error between the optimal value with
approximation value can be written as

N=N—N*"=(W-W*"((z) (19)

Remark 2. Because fuzzy basis functions (; (x) € [0,1],i = 1, M and the adjustable parameters vector
W are constrained in compact set Qyy, N is bounded satisfying 0 < ‘]\7 ’ < n. Besides, the external
disturbance D is bounded and N* is the optimal value of D, hence N* is also bounded, leading to
0< ‘]\7 ‘ < kK.

Adaptive fuzzy Backstepping SMC design

To construct contraction constraint, the adaptive fuzzy backstepping SMC (BSMCF) is employed to
create the auxiliary controller / (-) and its corresponding Lyapunov function. Firstly, the tracking error
is defined as &1 = q — qq. From that, the virtual control is chosen as the derivative of for the stabilization
of g for the stabilization £;. Considering the following Lyapunov candidate function

1
Vi = 55?61 (20)

Its derivative is . .
Vi=¢&& =¢1 (4—da) @n
_ The objective of this step is to find a control law « (¢) with o (0) = 0 such that when ¢ = () then
V1 (¢) < 0. From (21), « (q) can have the following form

a=qgq— K& (22)
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where Ky = diag (ki11, k12, k13, k14) is positive gain. Substituting « (¢) to (21) yields
Vi =~ Ki& (23)
Next, denote the error between ¢ and « (q) as & = ¢ — «. Taking the derivative of £, gives:
G=j—a=M'F-M'C§+G) —M'D o
=M'F-M1'(C§+G)-N

with N = M ~!D. To formulate the control signal, the second Lyapunov candidate function is defined to
guarantee global stability as follows.

V= Vi+ 2eTe + Ltrace (WTP—1W) 25)
2 2
Its derivative is
V=V +& (M™'F = M~ (C4+ G) — N) + trace (WTr—l (—W)) (26)

The designed control signal F includes two components: the equivalent control F,, which is
responsible for keeping the system states on the sliding surface, and the switching control F,, forcing
the system to an equilibrium point.

Foy=Ci+G+MN— M (& — @)
Fo = —M (kasign (&) + k3&o) (27

F=F.+Fo=0C¢+G+MN — M (& — &) — M (kosign (&) + k3&2)
Substituting (27) to (24) yields

o= —c=—(& +kosign (&) + k3&e) + N — N
— (&1 + Eosign (&) + kaka) + (N ~ N* 4+ N*— N) 28)
= — (& + kosign (&2) + k3&a) + Whh+e
with e = N* — N. The adaptive rule is selected as
W = Thel (29)
Using (29) and (28), V becomes:
V=V+ gg (—51 +WTh+e— kasign (&2) — kgfg) + trace (WTF_l (—W))
= —Tk6) — L kosign (&) — T kséa + €Te + trace (WTr—l (Fg{ h— W)) (30)

= —& k& — & kasign (&) — G ks&a + &3 €
If k5 is chosen such that ks > ¢, then

V < —€l k&1 — €5 kssign (&) — [€2| " (k2 — |2]) <0 31

Therefore, the system is global asymptotical stability under the control input (27) and the adaptive law
(29)
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Contraction condlition construction
From Backstepping SMC design procedure above, the auxiliary controller is
h(z) = Foq + Fsw =Cq+ G + MN — M (& — &) — M (kosign (&) + k&) (32)

with its corresponding Lyapunov function

Vesmco = —EF ki&y — €3 kosign (€9) — kT kaéo + €1 e (33)

The contraction condition for LMPC problem can be expressed as VL mpece < VBS mc- Considering
the Viype as follow:

Vinpe = €16 — € k& + race (WD (<W) ) + & (M7'F = M~ (C4+G) - M™'D — )
— ¢T¢y — Tki€) + trace (VT/TF*1 (—ﬁ/)) e (M*lF — M (cq +D+ N) _ a)
— Iyt (N—N*+N* —N)
= eT¢, — Tki€, + trace (WTr—l (—W)) 4T (M—lF —M! (cq +D+ N) - a) 4 eTe Ty
(34)
The adaptive law used for LMPC is selected as (29). Therefore:
Virpe = €56 — €Tki6) + eFe + €7 (M’lF — M (cq YD+ N) - a) 35)
Finally, the detailed contraction condition for LMPC can be expressed as

&7 (t) & (te) — & (1) kaéa (tr)
+ 68 () (M7 (@ (80)) F (071 = M7 (a(8)) (C a (1) (6)) d () + D (0) + N (1)) = ()

< =& (tr) kr&r (te) — &5 () kosign (& () — &2 (te) kséa (tr) , VE € [tiste + T
(36)

Remark 3. In order to ensure that the adaptation parameters W with adaptive adjustment law W are
bounded for all ¢ > 0 in the constraint set {2, the following projection function are used

. 0 if W > Gy and W >0
W=7 0 W <GrandW <0 37
w otherwise

Remark 4. The fuzzy logic system approximates the external disturbance with adaptive law (29) in each
sample time, and its value is used for the LMPC controller to predict state trajectory in the horizon
Tr. However, in some cases, the value of disturbance change erratically and rapidly; it takes time for the
fuzzy approximation system to adjust the current estimated value to the accurate one. Hence, if prediction
horizon 7}, and the frequency of disturbance fj; can satisfy T} fy < 1, the approximation error is ensured
to converge to a small region around the origin.
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Stability analysis for the LMPC

In this section, the recursive feasibility and the closed-loop stability of the LMPC problem are considered.
The following assumptions are set in advance

Assumption 0.2. The reference signals are smooth and upper bounded

llga ()l oo < @as lda ()l oo < Gar, [1Ga ()]l oo < a2 (38)

Assumption 0.3. Three pistons have the same capacity Fimaz = Fomaz = F3maz = Pmag and 7 <

Tmar{:

Theorem 0.4. If the following relation can be satisfied:

Eqdl + quZ + HX (0)”2 (1 + E) + g +m+ ]_CQmaz + (l_flmam (%lmax + 1 + 5) + %Smaz) ||X (O)HQ S fmax
(39)
and

I’y (T_L + QdZ + Zflmam (I_flmaz + 1) ||X (0)”2 + ]527774(11‘ + I_€3maz ||X (O)HZ + HX (O)”Q) S Tmazx (40)
then the LMPC admit recursive feasibility for all t > 0.

Proof. It is important to note that given the current system state x (t), h (x) is always feasible for the
LMPC problem if h (2) < Finaz = [Fimaz, Fomaz, Famazs T—ymax]T can be satisfied.

1 1
Let x = [ ? ], consider the Lyapunov function V,, = V| + §§sz2 = §XTEX with = = { é (} }
2
Its derivative is ) ' .

Vo= Vi+ & (=& — kasign (&) — ks2) + & (N = N) )

If the auxiliary controller h (z) is implemented, substitute (28) to (41) yields:

Ve = —€Thi& — & kasign (&) — F ko + €5 (N - )
< =& k& — & ks&a — |7 | (kz - ‘N - N ) “2)

= —&l gy - €l ksta — |¢F| (ko — |V = N* + N* = NV))
< =& ki& — G ks& — €| (ko — |e + Kl)
If ks is opted such that k; > ¢ + &, then V, < 0, which means || ()5 < lIx (0)]|5. Moreover, ||&1]|,, <

XMl aos 1€2]1 e < IX |l oo- Let Kimaz = || K1|| o and ko2mae = || K2]| . then the following inequation is
hold

[&1]] _ = lle2 = Ka&allo < el + Frmas 11l

< (1 + Ermaz) Xl o (43)
S (1 + klmaw) HX (O)”oo
S (1 + klmam) ||X (O)“Q
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Since ||¢|| ., = Hfl + q'dH < H&H + [|dd|| o» from (38) and (43) gives:
14 )lloe < @ar + (1 + k1) X (0[],
Next, from (38) and (22)

& = Gg — k1&y
ol = [Jda = aés]| < @iz + Frmas (vmas + 1) Ix Ol

Considering the control input of three pistons F},, as follow:

Foo = [F1, Fy, )" = Ah (z)

10 00
withA=| 0 1 0 0 |.Substituting (32) to (46) gives:
0 010
Fy :A(cq+G+Mz\7_M(§1 — &)
—M (kosign (&2) + k3&2))
= psq + Gps + MpsN - Mps (El - Oé)
— My (kosign (§2) + k32)
with
iy 4 mge + 2 4 Loy i My
¢ 9 4a? 9 9
M,, = my my I my
P 9 ma + My + 9 +12a2 9
mp My mp
9 9 mg + Mgyc + 9
151,12
—= 1
1a4 0 0 0 N
Che = 61,13 Gps = (m2+ 52) g | 1
0 0 0 3
12(14 1
0 0 0 0
Thus:

m Ipy Ipe _
| Mpsll ., = ;+m2+mdc+max{4zg712”;2} =M < 0o
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151,03 51,03
||CPS||O<> = max{ 40,4 ’ 12&4

151,, 51, > 51
< max { 2, 525 bl D

151,, 5l
Smax{ 4a® 1244

} @+ (14 k) X O)])% = &

1Gpsllo = H (m2 + %) glL1, I]THOO (52)

mp _
= (ma+g)g=g<o

Therefore, taking infinity norm on both sides of (47) yields

||Fp3||oo = Hcpsq + Gps + MpsN — M (61 —a) — Mps (kosign (&2) + k3§2)HOO

< NChedllac + 1 Gelloc + || Moo ]|+ 1Mpecily + 1My (Rasien () + ks + 1)

S c (le + (1 + Tflmam) ||X (0)”2) + Q +mn+m (qu + fflmam (];/’lmaw + 1) + ];53maz +1+c¢ (1 + I%ma:ri

= Cqd1 + CZ—" m (qd2 + E2maw + 777,) + (Elmaw (Elmaz + 1) + ];3771(17; +1+ 6(1 + klmaz)) HX (O)”Q
(53)
In term of control input 7., to rotate the mobile panels, 7., can be represented as follow:

7y = Bh(z) (54)
with B = [0, 0,0, 1]. Substituting (32) to (54) yields:
T :B(0q+G+MN_M(§1 — &)

—M (kosign (§2) + k3&2)) (55)
= M, N — M, (& — &) — M, (kosign (&2) + k3&2)

with M., = [0,0,0, I,]. Therefore, taking infinity norm on both sides of (55) yields:

7o = [ M = M (61 = @) = M (rasien (€2) + ksta)|

<My [| o (7 + Gaz + K1maz (Kimaz + 1) [1X 0)5 - + F2maz + Ksmaz [1x (0)]l, + [1x (0)]5)
=1, (T_L + Qa2 + Eimaz (Elmax + 1) lIx (0)”2 + kamas + ]:53maoc llx (0)”2 + lIx (O)HQ)

Suppose the inequalities (39) and (40) are hold, from (53) and (56), h(z) < Fiae =
[Fimazs Fomazs Fgmaz,T,ymm]T for all time, which means the LMPC admit recursive feasibility for
allt > 0.
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Theorem 0.5. Suppose the Assumption 0.1, 0.2 and 0.3 are satisfied, then the closed-loop system under

LMPC Algorithm 1 is asymptotically stable with respect to the equilibrium [ g ] = { 8 } .

Proof. Since the Lyapunov function V5 is continuously differentiable and radially unbounded, according
to converse Lyapunov theorems Khalil (2002), there exist functions v; (+),% = 1, 2,3 which belong to
class K satisfying following inequations:

v (llgll) < Va(q) < w2 (llgl)) (57)

%f(q,h(q)) < —vs (lal) (58)

Considering that the contraction constraint and the optimal solution will be implemented for one
sampling period each time, the following can be guaranteed:

%—Zﬂq,u(q» < %—Zf(q,h(q)) < —vs (4l (59)

By Lyapunov arguments Khalil (2002), the closed-loop system under Algorithm 1 is asymptotically
stable with a guaranteed region of attraction R

H = {z € R"|(39),(40)} (60)
Moreover, H can be extended by reducing the magnitude of the control gains k1,42, k2mazs k3maze

Remark 5. Theoretically, according to the stability analysis, system stability is not influenced by the
number of iterations in the optimization process. Therefore, the computational time for the MPC problem
is not discussed here. However, it is straightforward to apply the proposed controller in the real car-
driving system since the computational time of the MPC problem is effectively handled by automatic
code generation technique, which is developed in several software packages such as ACADO Quirynen
et al. (2015), FORCES Pro Zanelli et al. (2020), and VIATOC Kalmari et al. (2015).

Simulation results

In this section, numerical simulations for CDS are implemented to validate the advantages of the designed
LMPC method. The CDS model is working under several physical constraints. Assuming that the three
pistons have the same capability with the stroke length is 0.4 m, particularly the maximum force they can
function is 150 N, and their length I; (i = 1,2, 3) are limited in the range 0.4(m) to 0.8(m). In addition,

j, ;T} (rad) and the

the mobile panel can rotate along Oz axis with the rotation angular is in range [ 5

maximum rotation torque is 50 Nm.
The system parameters used for simulation include: m, = 15 (kg), mo = 3 (kg), mq. = 3 (kg),
a, = 0.05 (m), a = b = ¢ = 0.05, (m). The reference trajectories for CDS are designed as follows:
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Figure 2. Vertical external disturbance

I, = —0.0045t% + 0.034t% — 0.025¢ + 0.44
lo, = —0.0008¢% 4 0.0175t% — 0.011¢ + 0.7
I3, = 0.0008> — 0.0125¢t% + 0.072t + 0.5
Ay = 0.004t% — 0.0625t% 4 0.4¢

(61)

with z (0) = [0.55, 0.6, 0.6, 0,0,0,0, O]T is the initial values.

The parameters for LMPC controller are chosen as follows: the sampling period
h=0.05 (s), the prediction horizon 7Tj =b5h, the weighting matrices P = =
diag ([10°,10°,10°,2 x 10°,10%,10%,10%,1]), R =diag([1,1,1,0.1]). To numerically solve the
LMPC problems, Runge-Kutta 4th order method is employed to discretize the problem, and then the
sequential quadratic programming (SPQ) method is used to handle the Karush-Kuhn-Tucker (KKT)
conditions. For the fuzzy logic system, the Gaussian membership function is selected for each input, and
the adaptive gain matrix is I' = diag ([500, 500, 500, 100]).

Two simulation scenarios are conducted which consider different conditions of external forces and
uncertainties of the model to evaluate the quality of the proposed controller. The results of two simulation
scenarios are illustrated as follows.

Scenario 1

The CDS model in this circumstance endures the external force in the vertical direction, which is depicted
in Fig. 2.

The main advantage of the MPC controller is that it can effectively handle the hard constraints while
maintaining high performance for the system. Therefore, the comparisons between the proposed LMPC
controllers (LMPCF) with adaptive fuzzy BSMC (BSMCF) and original LMPC controllers (LMPC) are
conducted under the impact of the external force to the CDS system.
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Figure 3. Tracking trajectories of CDS in Scenario 1

The parameters used for LMPC are similar to the proposed controller, and the Fuzzy laws of
BSMCEF are similar to the Fuzzy laws of the proposed controller. The control gains for BSMCF are
K1 = KQ = Kg = dlag(l, 1, 1, 1)

The trajectory tracking results are presented in Fig. 3. The small control gain matrices K, Ko, K3
are opted to ensure a large region of attraction, which means the BSMCF can satisfy system constraints.
However, the performance of the LMPC controller strongly depends on the accuracy of the system model
to predict future state trajectories used for optimization. Hence, the original LMPC controller cannot
compensate for the model error when the external disturbance is added, leading to the worst performance.
On the other hand, with the assistance of the fuzzy approximation system and adaptive law, BSMCF and
LMPCF can meet the control requirement in the presence of disturbance.

To be more specific, the tracking errors of system states are depicted in Fig. 4. When the external
disturbance changes its value in instant 1s, 2s, and 4s, the LMPCF and BSMCEF controller quickly drive
the system back to the desired positions owning to the fuzzy approximation system while the original
LMPC cannot compensate for the difference of system model. The LMPCF controller converges faster
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Table 1. Mean Square Error with external forces - Scenario 1

MSE LMPCF BSMCF LMPC
l1 (cm2) 2.5891 3.7668 4.4864
lo (Cm2) 2.5444 3.6770 5.0918
I3 (cm2) 2.5603 3.7920 5.3287
¥ (10_4 rad2) 7.0689 11.163 8.2381
140
120
z
< 100
'g 80
5 60
40 ——F1_BSMCF |
— =F2 BSMCF
20 —=~F3_BSMCF |

0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
Time (s)

Figure 6. Control inputs of BSMCF

than two other methods, leading to its error value being also most minor, followed by BSMCF and
original LMPC.

To further verify the tracking performance of the proposed controller as compared to the others, Table
1 presents the mean square error of tracking errors in Scenario 1. Initially, the values of the system’s
states are set to be different from those of reference trajectories (10 cm for three pistons, 11.5 degrees
for rotating base); the error values then decline sharply, and after roughly 1s, the controlled outputs first
reach the desired points. Afterward, the CDS is impacted by the external forces as in (2), leading to the
deviation between the nominal model used to construct control signals and the actual model. Therefore,
large tracking errors always exit when the LMPC controller is implemented, causing the highest MSEs
in all tracking outputs. By contrast, because the external forces are estimated by the fuzzy system, the
model errors are compensated in control signals generation, the MSEs of LMPCF and BSMCF controllers
are reduced significantly. Especially, the MSEs of the LMPCF controller are all lower than the BSMCF
controller because they are optimized with constraints to produce control signals, while these of BSMCF
depend highly on the selection of control parameters K1, K>, and K.

The approximated disturbance values are presented in Fig. 5. When the disturbance changes, it takes
time for the fuzzy approximation system to adapt to the current value. Therefore, there is a fluctuation
in the system responses and the estimated disturbance values in the early period. The convergence speed
depends on the fuzzy logic structure and the learning rate.

In addition, the control input of BSMCF and LMPCEF are also shown in Fig. 6, Fig. 7. Since the LMPCF
controller can explicitly handle input constraints in the optimization step, the control inputs are kept in
the preconfigured range [0, 150] (N). When the tracking error is high, the LMPCF controller fully utilizes
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Figure 7. Control inputs of LMPCF

the piston capability to generate the fastest convergence while satisfying all constraints. Meanwhile, the
control gains K1, K5, K3 for BSMCEF are carefully selected not to break the constraints.

Scenario 2

In this case, the robustness of the proposed controller under the effect of model uncertainties and unknown
elements is presented. The comparison between the proposed method and LMPC without the assistance
of the fuzzy approximation system is illustrated to show the superiority of our method. To derive the
uncertainties, the system’s parameters to construct the control signal are different from the values used
in the dynamic model. Specifically, there exist 20% model parameter errors combined with unknown
noises, which are presented as red dashed lines in Fig. 8.

To further evaluate the performance of the proposed controller, Fig. 9 shows the tracking results of the
CDS.

According to Fig. 9, without the support from the fuzzy system to estimate the uncertain part, the
LMPC cannot derive the system to the exact reference path because the performance of the LMPC
depends heavily on the accuracy of the mathematical model. Therefore, there always exists the deviation
between the reference trajectories with the control output. On the other hand, the performance of the
controller is significantly improved when it is integrated with the fuzzy approximation system. In the
initial period, the fuzzy system takes time to adapt to the current disturbance value. The estimated outputs
of the fuzzy system are illustrated in Fig. 8. After roughly 1 second, the approximated noises follow nearly
the same as the actual value, which sufficiently compensates for the uncertain part in the controller signal.
Therefore, the robustness of the tracking system is considerably enhanced by the LMPCF controller. The
Mean square errors (MSEs) for both comparing controllers are calculated in the Table. Clearly, the MSEs
of the LMPCF are much smaller than the LMPC method. The mean square error with model uncertainties
of the controllers in Scenario 2 is summarized in Table 2.

According to Table. 2, compared with the LMPC controller, the proposed controller’s MSEs are
smaller, which improves tracking qualities by more than 15% for piston states and by more than 5% for
the rotation angle because the proposed controller is capable of estimating the model uncertainties while
retaining the robustness of the LMPC controller. At the same time, the LMPC is not capable of estimating
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Figure 8. Disturbance estimations of the CDS in Scenario 2

Table 2. Mean Square Error with model uncertainties - Scenario 2

MSE LMPCF LMPC Improvement
I; (cm?) 1.8388 2.1759 15.5%
Iy (cm?) 2.010 2.6391 23.97%
I3 (cm?) 1.6694 2.1403 21.76%
v (10~* rad?) 7.9417 7.9820 5.01%

them. By adding the contraction constraint in optimization, the MPC controller can inherit the robustness
and stability of the BSMC method with respect to the white noise or low amplitude noise as presented
in Kim et al. (2019), Liu et al. (2017b). Moreover, the controller is supported by the adaptive Fuzzy rule,
and thus uncertain elements, as well as noises, can be approximated or compensated to improve the
control quality. Hence, the proposed adaptive controller, in this case, has ability to handle with adverse
factors. The simulation results show that system performance with and without consideration of these
noises are nearly the same.
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Figure 9. Tracking trajectories of the CDS in Scenario 2

Conclusion

A method to cope with system constraints and uncertainties stemming from the CDS model is constructed
based on the Lyapunov-based MPC integrated with the adaptive fuzzy law. By incorporating the
Backstepping and SMC into the contraction condition, control performance, robustness, and stability
of LMPC is significantly enhanced. Moreover, the feasibility and closed-loop stability of the proposed
controller is also rigorously proven. Combined with the fuzzy technique, the system can approximate
the uncertain parts along with noises, and thus the appropriate values are generated for these factors
to improve the predictive model’s performance. Furthermore, the simulation results show the proposed
method’s superiority and efficiency compared to other controllers. In the future, experiments on the real
CDS model will be conducted to evaluate more accurately the performance of the proposed controller.
The fuzzy approximation system can be upgraded to respond more quickly to the change of the
disturbances. Besides, an observer is projected to be designed to estimate the system states which are
normally difficult to measure accurately in practice.
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